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Abstract

We used a lower limb robotic exoskeleton controlled by the wearer’s muscle activity to study human locomotor adaptation to

disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb

that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion

assistance from the exoskeleton in real time. We hypothesized that subjects’ gait kinematics would be initially distorted by the added

exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to

normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two

separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing

subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by �35%

and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to

retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns

between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by

muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Motor adaptation is critical for successful locomotion.
Humans regularly modulate muscle activity during walking
in response to environmental (e.g. terrain, obstacles) and
neuromuscular (e.g. fatigue, muscle strength) factors. While
many studies have examined human locomotor adaptation
to environmental perturbations (Tokuhiro et al., 1985;
Ferris and Farley, 1997; Farley et al., 1998; Ferris et al.,
1998; Leroux et al., 1999; Prentice et al., 2004; Marigold and
Patla, 2005; Lay et al., 2006; Maclellan and Patla, 2006), it
has been more difficult to study human locomotor adapta-
tion to controlled neuromuscular perturbations. Researchers
e front matter r 2007 Elsevier Ltd. All rights reserved.
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have studied neuromuscular locomotor adaptation in
animal models using botulinum toxin, nerve transections,
and spinal cord lesions (Lam and Pearson, 2002). However,
the invasiveness of these procedures make them unsuitable
for comparable human studies.
There is a critical need to understand how humans adapt

locomotor control in response to alterations in neuromuscular
dynamics. Neurological insult, such as stroke, and spinal cord
injury, leads to discoordinated locomotion and requires
motor adaptation to restore mobility (Grasso et al., 2004;
Kautz and Brown, 1998). From a clinical perspective, it is
imperative to identify principles governing locomotor adapta-
tion to perturbations disrupting muscular coordination.
We developed a novel robotic perturbation to study

human locomotor adaptation to disrupted muscle coordi-
nation. The perturbation is a pneumatically powered ankle
exoskeleton (Ferris et al., 2005, 2006; Sawicki et al., 2006).
The exoskeleton has a hinged ankle joint and an artificial
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pneumatic muscle providing plantar flexor torque (Fig. 1).
We focused on the ankle joint because it produces more
mechanical power during walking than either the hip or
knee joint (Meinders et al., 1998) and is a major factor
limiting mobility after neurological injury (Nadeau et al.,
1999; Kim and Eng, 2003; Kim et al., 2004).

In this study, the exoskeleton was proportionally
activated by the user’s soleus electromyography (EMG),
effectively increasing soleus muscle strength. We examined
neurologically intact subjects walking with the exoskeleton
on two separate days. We hypothesized that gait would be
initially distorted by the exoskeleton, but that the effect
would decrease with practice due to a reduction in soleus
muscle recruitment. By testing subjects on two separate
days, we were able to examine whether subjects stored a
walking motor pattern that reflected exoskeleton dynamics.
2. Methods

Ten healthy subjects (5 male, 5 female, mean7SD, age 25.872.3 years

and mass 75.3712.2 kg) gave written informed consent and participated in
Air

Compressor

EMG

Computer

Interface

Control Signal

Fig. 1. Subjects wore a custom fit exoskeleton on their left lower limb. The

exoskeleton was hinged at the ankle to allow unimpeded sagittal plane

rotation during walking. The exoskeletons had an average total weight of

1.270.1 kg (mean7SD) and moment arm length of 10.071.0 cm

(mean7SD) that varied depending on the size of the subject. Electrodes

placed on the skin of the subject’s leg recorded electrical signals (EMG) of

the soleus muscle. A computer processed the EMG to control air pressure

in an artificial pneumatic muscle so that there was a proportional

relationship between EMG and air pressure. As air pressure increases, it

caused the artificial muscle to develop tension. The exoskeleton effectively

increased ankle torque produced by soleus muscle activation.
the study. The University of Michigan Medical School Institutional

Review Board approved the protocol.

We constructed a custom fit exoskeleton for the left lower limb of each

subject (Fig. 1). Construction and testing of earlier prototypes of the

exoskeleton have been described in detail (Ferris et al., 2005, 2006;

Gordon et al., 2006). The exoskeleton consisted of a carbon fiber shank

section and a polypropylene foot section. A metal hinge between the

sections allowed free sagittal plane rotation of the ankle joint.

An artificial pneumatic muscle attached to the posterior of the

exoskeleton provided plantar flexor torque. Increasing air pressure

(0–6.2 bar) caused the artificial muscle to increase force. Air pressure

regulators produced sounds that were audible to the subjects.

We implemented proportional myoelectric control of the artificial

muscle through a desktop computer and real-time control board

(dSPACE Inc.). Custom software regulated air pressure in the artificial

muscle proportional to processed soleus EMG amplitude (Movie 1 online

supplement). EMG signals from the soleus used to control the artificial

muscle were high-pass filtered with a second-order Butterworth filter

(cutoff frequency 20Hz) to remove movement artifact, full wave rectified,

and low-pass filtered with a second order Butterworth filter (cutoff

frequency 10Hz) to smooth the signal. Threshold cutoffs eliminated

background noise. Adjustable gains scaled the control signals. During

walking, artificial muscle force production is modulated by three primary

factors: activation, muscle length and bandwidth (Gordon et al., 2006).

There is no simple linear gain relating EMG amplitude to artificial muscle

force. More details on artificial muscle and orthosis mechanics can be

found in previous studies (Ferris et al., 2005, 2006; Gordon et al., 2006).

We recorded kinematic, kinetic, and electromyography data during the

first 10 s of every minute while subjects walked on a treadmill at 1.25m/s.

We collected three-dimensional kinematics using a 6-camera video system

(120Hz, Motion Analysis Corporation, Santa Rosa, CA) and step-cycle

data using footswitches. We collected artificial muscle force with a force

transducer (1200Hz, Omega Engineering). We recorded EMG (1200Hz,

Konigsberg Instruments Inc.,) from the left soleus, tibialis anterior, medial

gastrocnemius, lateral gastrocnemius, vastus lateralis, vastus medialis,

rectus femoris and medial hamstring muscles using bipolar surface

electrodes. Before walking we inspected EMG during manual muscle tests

and moved electrodes to minimize crosstalk. Electrode position was marked

on each subject using permanent ink to guarantee consistent placement

between sessions. While it is possible that subjects in this study would

demonstrate locomotor adaptations in both lower limbs, we have selected to

focus this study only on the changes occurring in the left (perturbed) limb.

Subjects completed two identical testing sessions 72h apart. During each

session, subjects walked for 10min with the exoskeleton passive (baseline),

then 30min with the exoskeleton powered (powered), and finally 15min

with the exoskeleton passive (post-adaptation). Transitions between

conditions were performed without stopping. We selected a 3-day period

between sessions to allow sufficient time for motor consolidation to occur

and to allow recovery from potential muscle soreness. Before testing,

subjects were informed that the exoskeleton would ‘‘increase the strength of

their soleus muscle’’, but they were not given any practice walking in the

exoskeleton. Subjects were instructed to walk in the manner that they felt

most comfortable without holding onto the treadmill. Subjects received no

additional external feedback about ankle kinematics or kinetics.

We created average step-cycle profiles for EMG, kinematic and kinetic

variables for each subject. Average step-cycle profiles were calculated from

all complete step cycles recorded during each minute of walking (8–12

cycles). To examine changes in EMG amplitude, we calculated normalized

root mean squared (RMS) EMG values for both stance and swing phases

of the gait cycle. RMS values were calculated from EMG data that was

high-pass filtered (cutoff frequency 20Hz), rectified and normalized to the

final minute of baseline on a given testing day. We also created step-cycle

profiles for joint angles calculated from smoothed marker data (low-pass

filtered, cutoff frequency 6Hz). To examine changes in kinematics across

time, we calculated ankle, knee and hip joint angle Pearson product

moment correlations between average step-cycle joint angle profiles for

each minute of walking versus average step-cycle joint angle profile during

the final minute of baseline on a given testing day (Fig. 2). We used the
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common variance of the correlation (r2) to assess similarity between ankle

joint patterns at the two instances in time. We also calculated average

exoskeleton positive and negative mechanical work during the step cycle.
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Fig. 2. Linear correlation between baseline and powered ankle joint

kinematic patterns. Example data are plotted for one subject during the

first minute of powered walking (minute 1) and the 30th minute of

powered walking (minute 30) during day 1. Both patterns are plotted

versus the ankle joint kinematic pattern during the last minute of baseline

walking. Pearson product moment correlation common variances (r2)

provide a quantitative measure of similarity in joint kinematic patterns

(Derrick et al., 1994).
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Fig. 3. Joint kinematic patterns. Ankle, knee and hip movement patterns are

minute of powered walking (minute 1, black line), and the last minute of pow

average of all subjects. Vertical black lines represent the average toe-off tim

throughout the stride cycle during the initial powered condition (day 1, minute

similar degrees of dorsiflexion and plantar flexion as the baseline pattern. The
We used repeated measure ANOVAs to test for differences in

normalized EMG RMS, joint angle correlation common variances, and

positive and negative exoskeleton work between days and condition

(baseline minute 10, powered walking minute 1, 15 and 30, and post-

adaptation minute 1 and 15). We set the significance level at po0.05 and

used Tukey honestly significant difference (THSD) post hoc tests.

To test for differences in motor adaptation rate during powered and

post-adaptation walking, we calculated time to steady state for soleus stance

RMS EMG, ankle joint correlation, and exoskeleton positive and negative

mechanical work. We defined an envelope of steady-state behavior during

powered walking based on the mean72 SD (Noble and Prentice, 2006) of

the final 15min of day 2. Linear regression of data in this period revealed

slopes that were not statistically different from zero (p40.05). Time to

steady state during powered walking was calculated as the time until values

entered the envelope for at least three consecutive minutes and did not have

any two consecutive minutes outside the envelope afterwards. For post-

adaptation walking, similar methods were used but the steady-state

envelope was determined as the mean72 SD of data from 10min of non-

powered walking (the last 5min of both baseline and post-adaptation

walking) on day 2. Linear regression of the data in these periods also

revealed slopes that were not statistically different from zero (p40.05).

To make an estimate of the amount of assistance that the powered

exoskeleton provided during walking, subjects returned for a third testing

session of over ground walking. We recorded kinematic and force platform

data during normal over ground walking at 1.25m/s without wearing the

exoskeleton. We calculated net torques and work performed about the ankle

joint using commercial software (Visual3D, C-Motion Inc.) to perform

inverse dynamic calculations. Lower limb inertial properties were estimated

based on anthropometric measurements of the subjects (Zatsiorsky, 2002).
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e. The ankle kinematic pattern showed greatly increased plantar flexion

1). By the end of the second training session (day 2, minute 30), there were

hip and knee kinematic patterns were similar across all testing conditions.
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3. Results

3.1. Day 1, powered minute 1

When subjects first received additional plantar flexor
torque from the powered exoskeleton, they demonstrated
an immediate and substantial change in walking pattern
(Fig. 3 and Movie 2 online supplement). Peak plantar
flexion angle increased from �13.373.61 (mean7SD)
during baseline to �28.379.11 during the first minute of
powered walking. The deviation in kinematics was reflected
by a significant change in ankle angle correlation common
variance compared to baseline (THSD, po0.05) (Fig. 4). In
addition, during the first minute of powered walking both
knee and hip angle correlation common variance were
significantly different from baseline (THSD, po0.05). The
angle correlation common variances during the first minute
of powered walking (ankle 0.2970.2; knee 0.8170.1; hip
0.9070.1) were the lowest values observed during the 2 test
days. While the changes in angle correlation common
variance during the first minute of powered walking were
significant at all three joints the magnitude of change at the
ankle was nearly four-fold that of the knee or hip.

Subjects had a relatively continuous soleus activation
pattern throughout stance during minute 1 (Fig. 5). As a
result of the soleus recruitment pattern, the exoskeleton
produced plantar flexor torque throughout stance (Fig. 6).
This yielded negative exoskeleton mechanical power early
in stance and positive exoskeleton mechanical power late in
stance (Fig. 6).

Many other muscles also demonstrated increased activa-
tion during the first minute of powered walking (Fig. 7).
Tibialis anterior, medial gastrocnemius, lateral gastrocne-
mius, vastus medialis, vastual lateralis, rectus femoris, and
medial hamstrings all had significantly greater EMG RMS
at minute one compared to baseline (THSD, po0.05).
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Fig. 4. Ankle joint kinematic correlation common variances. Mean data (black

for each minute. During powered conditions the horizontal black lines are the

day 2, representing steady state dynamics. During baseline and post-adaptation

from the last 5min of baseline and post-adaptation during day 2. The steady st

purposes only, individual subject analyses were used for statistical tests.
3.2. Day 1, powered minute 30

With practice walking with the powered exoskeleton,
ankle kinematics became similar to normal (Movie 3
online supplement). At powered minute 30, ankle angle
correlation common variance had increased significantly
(0.6470.11) compared to minute 1 (THSD, po0.05).
However, ankle angle correlation common variance was
still significantly different from baseline after 30min of
walking (THSD, po0.05). The adaptation period of ankle
angle correlation common variance was 23.879.8min
(Fig. 8). After 30min of practice, knee correlation common
variance was still significantly different from baseline but
had increased significantly from minute 1 to 0.9170.04
(THSD, po0.05). Hip angle correlation common variance
was not significantly different from baseline at minute
15 or 30.
The timing of soleus activation returned to a bursting

pattern similar to baseline with practice, although the
amplitude substantially decreased (Fig. 5). Soleus stance
EMG RMS was different from baseline at powered
minutes 1, 15, and 30 (THSD, po0.05). The soleus stance
RMS adaptation period during the 30min of powered
walking on day 1 was 23.878.8min (Fig. 8). EMG RMS in
all other muscles during minutes 15 and 30 of powered
walking was not significantly different from baseline
(THSD, p40.05). There were no significant differences in
positive work between minutes 1, 15, and 30 of powered
walking (THSD, p40.05) (Fig. 9). Negative work sig-
nificantly decreased from minute 1 to minute 30 (THSD,
po0.05) (Fig. 9).

3.3. Day 1, post-adaptation

When exoskeleton power was removed, subjects rapidly
returned to ankle kinematics and soleus activation patterns
Time
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(10 min.)
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Day 2 

0

1.0

± St. Deviation

dots)71 standard deviation (grey area) of all subjects (n ¼ 10) are shown

mean72 standard deviations of group mean data from the last 15min of

conditions horizontal black lines are the mean72 SD of group mean data

ate envelopes displayed are calculated for the group mean data for display
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similar to baseline (Figs. 4 and 5). Ankle, knee and hip
angle correlation common variance during the first minute
of post-adaptation walking was not significantly different
from baseline (THSD, p40.05). Soleus EMG RMS during
the first minute of post-adaptation was also not signifi-
cantly different from baseline (THSD, p40.05).
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3.4. Day 2, powered minute 1

During the first minute of powered walking on day 2,
subjects’ ankle kinematics were more plantar flexed
throughout the gait cycle compared to baseline but not to
the extent seen on day 1 (Fig. 3). Peak plantar flexion angle
at minute 1 was �17.478.11. The ankle angle correlation
common variance during the first minute of powered
walking on day 2 was 0.4670.18 (Fig. 4). This common
variance was significantly different from baseline walking
on day 2 (THSD, po0.05) and from the first minute of
powered walking on day 1 (THSD, po0.05), but it was not
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significantly different from minute 30 on day 1 (THSD,
p40.05). Similarly, both knee and hip angle common
variance were significantly different from baseline during
minute 1 of powered walking on day 2 (THSD, p40.05).

Soleus activation displayed a clear bursting pattern
during the first minute, similar to baseline but with
decreased amplitude (Fig. 5). Soleus EMG RMS during
minute 1 on day 2 was significantly less than minute 1 on
day 1 (THSD, po0.05), but not different from minute 30
on day 1 (THSD, po0.05). There were no significant
differences in exoskeleton positive mechanical work
between minute 1 of day 2 and minute 1 of day 1 or
minute 30 of day 1 (THSD, p40.05). During minute 1 of
day 2, exoskeleton negative mechanical work was signifi-
cantly less than during minute 1 of day 1 (THSD, po0.05)
but not significantly different from minute 30 of day 1
(THSD, p40.05).

The only differences in EMG RMS in muscles other than
soleus occurred in tibialis anterior and medial hamstrings,
with significantly larger values during minute 1 compared
to baseline (THSD, po0.05).

3.5. Day 2, powered minute 30

With practice on day 2, subjects walked with a similar
ankle kinematic pattern to normal. At the end of 30min of
powered walking, subjects had significantly increased their
ankle angle correlation common variance (0.7870.08)
compared to powered minute 1 (THSD, po0.05) (Fig. 4).
However, the common variance at minute 30 on day 2 was
still significantly different from baseline (THSD, po0.05).
The adaptation period on day 2 for the ankle angle
correlation common variance was 5.874.7min. This adap-
tation period was significantly less than day 1 (ANOVA,
po0.0001) (Fig. 8). By powered minute 30 on day 2 neither
knee nor hip angle correlation common variance was
significantly different from baseline (THSD, po0.05).
Soleus EMG RMS at minute 30 of powered walking was

(65713%) significantly lower than baseline (THSD,
po0.05). The adaptation period for soleus EMG RMS
during powered walking on day 2 (5.575.5min) was
significantly less than day 1 (ANOVA, po0.0001). The
exoskeleton produced a peak positive mechanical power of
107W at the end of day 2, about 65% of the positive ankle
power during normal (i.e. no exoskeleton) walking (Fig. 6).
There were no significant differences in exoskeleton
positive or negative mechanical work between minutes 1,
15, and 30 on day 2 (THSD, p40.05). Exoskeleton positive
and negative mechanical work were significantly less during
day 2 than day 1 (ANOVA, po0.05). The adaptation
periods for exoskeleton positive and negative mechanical
work were significantly less on day 2 compared to day 1
(ANOVA, po0.05) (Fig. 8).
No other muscles had EMG RMS values significantly

different from baseline during minutes 15 and 30 of
powered walking on day 2 (THSD, p40.05).
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3.6. Day 2, post-adaptation

On day 2, ankle kinematics and soleus muscle activation
rapidly returned to baseline levels when exoskeleton power
was removed. Ankle, knee and hip angle correlation
common variance and soleus EMG RMS for the first
minute of post-adaptation walking were not significantly
different from baseline (THSD, p40.05). The post-
adaptation periods (Fig. 8) were not significantly different
between days (ANOVA, p40.05).

4. Discussion

The findings support our hypothesis that subjects would
reduce soleus recruitment when walking with a powered
exoskeleton providing supplemental plantar flexion torque
proportional to soleus EMG. At the end of the second
walking session, subjects walked with an ankle kinematic
pattern significantly different from baseline. It is possible
that further training would have resulted in additional
modifications to muscle activation patterns and ankle
kinematics. However, linear regression of data from the
last 15min on day 2 indicated all performance parameters
had slopes not significantly different from zero. Therefore,
further modifications would likely be relatively small and/
or require much longer training periods.

The adaptation period observed on the first test day was
relatively long (�24min for ankle kinematics and soleus
EMG) compared with previous studies investigating hu-
man locomotor adaptation to external perturbations
(Ferris et al., 1999; Stephens and Yang, 1999; van Hedel
et al., 2002; Emken and Reinkensmeyer, 2005; Lam et al.,
2006). A difference between our study and previous
research was that the perturbations in this study directly
affected the relationship between muscle coordination and
joint dynamics. Animal studies of locomotor adaptation to
disrupted muscular coordination have found that con-
siderable walking practice is required to be fully adapted
(Lam and Pearson, 2002; Rossignol, 2006). In these studies
the adaptation times required to reach steady state were on
the order of days or weeks, not steps or minutes.

Although other studies have utilized exponential or
power law fits of performance data to characterize motor
adaptation, we did not find this approach helpful in our
data analyses. Exponential and power law fits had r values
lower than 0.2 for some individual subject data in our
study. Recent modeling work suggests that there are at
least two independent processes with different time scales
underlying motor adaptation (Smith et al., 2006). Thus, a
single adaptation rate from an exponential or power fit
would not provide the best measure of motor adaptation
rate. Using time to steady state (Noble and Prentice, 2006)
as the measure of motor adaptation rate does not make any
a priori assumptions about the shape of the motor
adaptation data.

Results from our second day of testing demonstrated
that subjects developed a lasting representation of limb
dynamics when wearing the exoskeleton. Subjects learned
and stored a new muscle activation pattern for locomotion.
During minute 1 of day 2, soleus EMG and exoskeleton
kinetics immediately returned to values similar to the final
minute on day 1. A leading theory on the neural control of
movement is that humans form predictive representations
of system dynamics (i.e. internal model) when they
experience modifications to their musculoskeletal me-
chanics or environment (Kawato and Wolpert, 1998;
Davidson and Wolpert, 2005). Results from our study
support the idea that humans form and store internal
models of system dynamics for locomotion as evidenced by
the improved performance on the second day of testing.
Furthermore, our post-adaptation results indicate that
humans can quickly return to their primary internal models
when musculoskeletal mechanics are returned to normal.
The way subjects learned to use the exoskeleton provides

insight into walking biomechanics. A simple model of
bipedal walking suggests that the most energetically
efficient method of powering walking is to input power
from the ankle immediately before toe-off (Kuo, 2002).
Subjects in our study adapted their motor patterns to use
the powered exoskeleton in a similar manner. With
practice, subjects increased peak positive power performed
by the exoskeleton before toe-off and decreased negative
work throughout the gait cycle. During the learning
process, subjects initially activated many muscles almost
continuously. With practice, they modified muscle activa-
tion to become more burst-like with clear on and off time
periods. During the development of walking, children
demonstrate similar muscle activation patterns, changing
from almost continuous to burst activation (Okamoto and
Goto, 1985; Thelen and Cooke, 1987; Bradley and Smith,
1988; Okamoto et al., 2003). Both observations suggest
that humans learn when not to activate muscles during
walking rather than learning when to activate them.
Continuously activating muscles creates higher joint
impedance and likely increases walking stability (Duan
et al., 1997; van Soest et al., 2003). The trade-off is high
metabolic cost resulting from greater muscle forces and
competing positive and negative work.
This study used a robotic exoskeleton to investigate

human locomotor adaptation. Subjects demonstrated a
longer adaptation period in response to the imposed
neuromuscular discoordination than has been demon-
strated for environmental perturbations. However, with
practice subjects learned to use the additional exoskeleton
power effectively during walking. In addition subjects
demonstrated an ability to store the learned exoskeleton
motor program.
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